Oversmoothing Tikhonov regularization in Banach spaces
نویسندگان
چکیده
منابع مشابه
Mixed Tikhonov regularization in Banach spaces based on domain decomposition
We analyze Tikhonov regularization where the forward operator is defined on a direct sum U of several Banach spaces U i ; i ¼ 1;. .. ; m. The regularization term on U is a sum of different regularizations on each U i. The theoretical framework, known for the case m ¼ 1, can be easily reformulated to the case m > 1. Under certain assumptions on weak topologies and on the forward operator it is p...
متن کاملMinimization of Tikhonov Functionals in Banach Spaces
Tikhonov functionals are known to be well suited for obtaining regularized solutions of linear operator equations. We analyze two iterative methods for finding the minimizer of norm-based Tikhonov functionals in Banach spaces. One is the steepest descent method, whereby the iterations are directly carried out in the underlying space, and the other one performs iterations in the dual space. We p...
متن کاملThe prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces
It is known, by Rockafellar (SIAM J Control Optim 14:877–898, 1976), that the proximal point algorithm (PPA) converges weakly to a zero of a maximal monotone operator in a Hilbert space, but it fails to converge strongly. Lehdili and Moudafi (Optimization 37:239–252, 1996) introduced the new prox-Tikhonov regularization method for PPA to generate a strongly convergent sequence and established a...
متن کاملNonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces
Nonstationary iterated Tikhonov regularization is an efficient method for solving ill-posed problems in Hilbert spaces. However, this method may not produce good results in some situations since it tends to oversmooth solutions and hence destroy special features such as sparsity and discontinuity. By making use of duality mappings and Bregman distance, we propose an extension of this method to ...
متن کاملNon-linear Tikhonov Regularization in Banach Spaces for Inverse Scattering from Anisotropic Penetrable Media
We consider Tikhonov and sparsity-promoting regularization in Banach spaces for inverse scattering from penetrable anisotropic media. To this end, we equip an admissible set of material parameters with the L-topology and use Meyers’ gradient estimate for solutions of elliptic equations to analyze the dependence of scattered fields and their Fréchet derivatives on the material parameter. This al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2020
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/abcea0